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Interchain tunnelling of large polarons and bipolarons 
in quasi-ir, solids 
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Tashkent 700135, USSR 

Received 18 August 1988 

Abstract. The formation of interchain bands for continual polarons and bipolarons in quasi- 
ID conducting polymers and molecular systems is considered at zero temperature. For the 
case of non-adiabatic t ,  hopping, a qualitatively strong dependence is found of the interchain 
tunnelling of polarons/bipolarons on their intrachain motion and on the type of 3D ordering. 
Relevant experiments are proposed. 

1. Introduction 

It is now well established that charge carriers in quasi-one-dimensional ( Q ~ D )  solids 
frequently self-trap into highly anisotropic states having a large (or intermediate) size 
along the chains and a small one azross them [l-41. A good example is given by kink 
solitons, polarons and bipolarons in some conducting polymers which are fairly well 
described by continuum models for the intrachain (longitudinal) direction (see e.g. [2, 

The transport properties of such states are clearly of interest. Therefore detailed 
theoretical studies have been made of their quasi-free intrachain motion (see reviews in 
[4]). On the other hand, only a few papers have dealt with the interchain (transverse) 
transfer of continual polarons and bipolarons. The Franck-Condon factor for the trans- 
verse tunnelling of a polaron in trans-polyacetylene has been computed in [5] and 
interchain bipolaron hops have been described in a phenomenological way in [ 6 ] .  
However, the natural question of what qualitative features of interchain transfer are 
inherent for the large-radius states has not been discussed. Meanwhile, results of experi- 
ments with oriented conducting polymers apparently imply the importance of the inter- 
chain migration in long-lived charge photoproduction and relaxation, in the 
conductivity, etc [7]. That is why this problem is discussed in the present paper. 

Compared with small-radius polarons in conventional molecular systems [4], two 
specific new properties could be expected here. The first one is a connection of inter- 
and intrachain motions arising owing to the spatial extent of the self-trapped electron 
wavefunctions. The second one is a dependence of the transverse transfer on 3~ ordering 
in the dimerisation pattern of conducting polymers inferred from the already found 
differences of 3~ electronic spectra [8,9], polarisational optical properties [lo, 111 and 
polaron/bipolaron stability [9] for in-phase (AA)  and out-of-phase (AB)  orders. In 
order to demonstrate these features, we consider the extremely simplified models of the 
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transverse band formation for polarons/bipolarons due to interchain tunnelling at zero 
temperature (more details are available in [12]). Continual polarons and bipolarons will 
be characterised by their gravity centres (or ‘centroids’ [l]) and the above features reveal 
themselves through the properties of the generalised ‘interchain transfer integrals’. 

2. Polaron tunnelling 

Bare interchain coupling is provided, as usual, by ‘at-point’ free electron hopping t,: 

For the interchain transfer of large polarons, however, one could propose a phenom- 
enological description with use of continuous functions t(g): 

H ,  = L: J d ~ ,  d ~ 2  ~ ( E Z  - t1)cL+1(t2)cn(E1) + HC. (2) 
n 

The operators V i ( x )  and cL(6) in (1,2) create the electron or polaron respectively on 
the nth chaint with the longitudinal coordinates x or E (i.e. the centroid at E ) .  With 
account of (2), the band energy of polaron is of the form 

( q  is used for the intrachain momenta and k for the interchain ones). Here Cep(q) = 
EP + q2/2Mp is the one-chain zero-phonon energy (h  = 1) [l] ,  EP and MP being the 
energy at rest and effective mass correspondingly; CY, is the interchain distance and 
Ikl s n/2a,. We restrict ourselves to the cases when the Fourier transform zq = 
J d&(g) exp(-iqg) can be chosen real, zq = tq*, that is z(g) = z*(-E). 

Of course, the problem is to determine t(E). Let us do it for non-adiabatic t ,  hopping 
which means that, while the lattice motion is an adiabatic perturbation for the intrachain 
movement of electrons, the lattice itself adiabatically follows interchain electron hops. 
Then one can use Holstein’s approach to the small polaron motion [ 131 considering XL 
in (1) within first-order perturbation theory. The unperturbed states in our problem are 

% $  = %p(q)  * 2 t ,  cos(kCY,) (3) 

Imq) = a n m V ) m ( X  - E m ,  Q“))L-”2 exP(iqEm)Im) II In). (4) 
n f m  

In the state lmq), the polaron with the longitudinal momentum q is on the mth chain of 
length L, the other chains are empty. The first two factors in (4) are the wavefunction 
of the self-trapped electron related to the polaron centroid, Im) and Im) are the phonon 
vacua of the mth chain without and with a polaron on it correspondingly. The im) vacuum 
is defined with respect to the set of normal vibrational coordinates e(”) = {elm)} where 
the (discrete or quasi-continuous) index v # 0: the zero-frequency translational mode ehm) (see [l, 141 for ID molecular systems with optical phonons and [15] for trans- 
polyacetylene) is separated and replaced by the collective coordinate &, [l] ,  as it is 
usually performed at the solitons’ quantisation [16]. Then the one-chain potential for 
electrons reads [ 1, 161 

with Ap(x) being the static polaron deformation and ry(x) the orthonormalised oscil- 
lations around it. The im) vacuum is defined with respect to other vibrational coordinates 
t For simplicity, a layered ZD structure of chains (each equivalent for polarons) is considered. 
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Figure 1. The qualitative shape of the function 
t(5) for AA andABorderings as drawn according 
to t (5)  in equation (8). 

om) so that, when integrating over dQ dg in the matrix elements, the JacobianJ = d(U) /  
d(Q, E )  should appear. Being explicitly independent of 5, J(Q) is a smooth function of 
Q alternatingfromj - (p/a~i)l’~ at Q = 0 t o J  = 0 at such Q that dA(x)/dx = Oin (5). The 
change of scale of the function Ap(x), l /p ,  here is -lp, lp  being the polaron length and 
a11 the longitudinal lattice spacing [12]. Thus we obtain (mq/Xe,1m + 1,q’) = ~,6 , ,~  
corresponding to equation (2) with 

t ( ~ ) = t , i ^ d x @ ~ ( x ) @ m + , ( x + ~ )  (6) 

@m(X - E m )  = (mIJ1’z(Q(m))qm(X - E m ,  Q‘”) Im). (7) 
Equations ( 6 )  and (7) allow one to study the symmetric properties of t(6) as follows. 

In the Peierls model of conducting polymers, the one-chain electronic Hamiltonian 
h(x) = -iuF(d/dx)a3 + A(x)a, ( a  are the Pauli matrices) so that, for the potentials (9, 
the relationship Qm( -x) = al(Pm(x) is valid with accuracy to the sign [12]. On the other 
hand, the wavefunctions on the neighbouring chains are related as @ m + l ( ~ )  = AQm(x), 
the operator A is determined by the type of interchain ordering. Here we consider AA 
orders with Am = Am+1 and AB orders with Am = - A m + l  known in the polyacetylene 
theories [8,9]. For coupling with the constant t ,  ( l ) ,  one then hasA = 1 for AA andA = 
a3 for AB. Another limiting case is the complete alternation zf t ,  over even and odd 
sites (t,), = -(tJo. Such orders denoted in [17] and’rA and AB correspond to A = aZ 
and u1 respectively (see also [ 181). Thus quite dif2rent symmetries are possible: t( - E )  = 
+t(E)inAA,A%but t ( - E )  = -t(E)inAB,AA,moreovert(E) ~ O i n t h e K A p h a s e .  

The exact shape of t ( E )  has to be found numerically but it is instructive to consider 
the electronic overlap 

ofqfunctionsatQ = Oforthewellknownpotential[2,3]A(x; &)/Ao = 1 - ,uEo(t+ - t - ) ,  

At different a values, A(x; a) corresponds to the ground state Ao, to static polaronic 
Ap(x) or bipolaronic ABp(x). One then has t(E) = pE/sinh(pE) for AA order and also for 
molecularsystems;t(E) = icf- -f )forABwheref, = ( P E  ? a)/2sinh(pE -+ a);t(E) = 
0 for A% and t(E) = cf+ + f-) for A%. Probably, the E dependence o f t (  5 )  is qualitatively 
similar to that of t ( f ) ,  see figure 1, but with some ‘average’ (according to (7)) values of 
the parameters p,  a between polaronic ,up, ap and the ground-state value a = 0. The 
same is valid for the average value of J .  tq in (3) behaves analogously to tq: 

t r  = tanh(px -+ a/2) pgo = tanh(a). (9) 

t, =fo(q) = nZ/2p cosh2(nq/2p) in AA (10) 

t ,  = fo(4) Sin(qa/P) inAB (11) 
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t9 = fo(4) c o s ( q 4 4  in A%. (12) 
Thus polaronic z(g) is expected to have a fall scale over comparable with I,; the fall 
momentum for t9, qc - l/lp, and the period of oscillations for AB, Aq - qc. 

The remaining factor in (7) from the overlap of truly vibrational states, denoted by 
exp( -S/2)t, determines the magnitude o f t :  the polaronic band is renormalised as t ,  --$ 

tl = t ,  exp(-S). For an optical-phonon-polaron, S can be estimated as S - sp /w,  E,  

and w being the polaron binding energy and phonon frequency respectively. However, 
S values become much larger for nearly topological self-trapped states, say for an 
acoustic-phonon-polaron or for a ‘long’ bipolaron (in analogy to the results of [19]). 

3. Bipolaron tunnelling 

The interchain transfer of a bipolaron with two fermions should proceed through inter- 
mediate states which, in our perturbation approach, are the one-chain bolarons. The 
reactions of bipolaron fission (or fusion) into two polarons on the neighbouring chains, 
BP,$ P, + Pnt l ,  could phenomenologically be described by the amplitude @ ( E ,  E ’ ) :  

b;(E) creates the bipolaron with the centroid at f .  In the case of a large difference 
between the energies of the bipolaron and two polarons, the correction to the one- 
chain bipolaron energy CeBP(q) = E B p  + q2/2kfBp due to (13) is easily calculated; its k- 
dependent part is 

where [ 121 
%1(q7 k )  = y ,  cos(kmu,) (14) 

and the Fourier transform @(q,  4’) = J dE dE’@(E, E ’ )  exp(-iqf - iq’f’). To deter- 
mine the @ function, the unperturbed states (4) have to be added to the analogously 
constructed bipolaronic states [12]. The result is 

(16) 

(17) W,(X, E ’ )  = (mi J 1 ’ 2 ( Q ( m ) ) J ~ / 2 ( R ( m ) ) ~ m ( ~  - E ’ ,  Q(”) Im}. 

Here Im} is the phonon vacuum of the mth chain with bipolaron, the corresponding 
vibrational coordinates R(,) are related to Q(”) by the equation 

A B P ( ~ )  - AP(X - E ’ )  = (Q,V,(x  - 5’) - R,flv(X)) 
VZO 

flv(x) being the normal oscillations around ABp(x). J l ( R )  = a(U)/a(R, g) is analogous to 
J (in addition, y, - pBp). The symmetric properties of (16) can also be readily obtained: 
@ ( - E ,  -E‘) = +@(f ,  E ’ )  withthesign‘+’forAA,A%and‘-’forAB,rA orders. The 
renormalisation oft, occurs in accordance with (7,17). 
t Defined in such a way, the Franck-Condon factor exp(-S) deviates somewhat from that computed in [5] 
where the zero-frequency mode has been not separated. 
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Figure 2. A sketch of the e($, 5’ = 0) amplitude 
behaviour for ‘long’ bipolarons in the AA and A B  

The calculation of @ ( E ,  E ’ )  is obviously difficult. Let us however discuss the case of 
a ‘long’ bipolaron when aBp S 1 and the distance between composing kinks, IBp - aBp2jo, 
is much larger than the kink width -Eo  - I,. Then the distribution of self-trapped 
electron density resembles a dumbbell suggesting the assumption that even after ‘aver- 
aging’ in equations (7, 17) the function @ ( E ,  E’ = 0) retains a double peaked structure 
(sketched in figure 2), the peak width comparable with 1, and interpeak distance with 
lBP. Besides the relative changes in the peak positions and heights, there is a general 
tendency for i@(E, E’)l to fall with increasing 1E’/. Since at the length -lBp the vibrational 
overlap in (17) should decrease by the factor -exp( - C E ~ / W ) ,  C - 1, the characteristic 
fall scale in the 5’ direction seems to be I‘ - lBp(W/&p).  In the E direction, the 101 falls 
with the scale 1 - I, and, hence, the convolution function Yq in (15) has the characteristic 
fall momentum qc - l/max(l, 1’). On the other hand, the oscillations of Yq are expected 
to have the period Aq - 1/lBp < qc. 

4. Discussion 

We have demonstrated above how the interchain tunnelling of large (i.e. extended along 
the chains) polarons/bipolarons is related to their intrachain motion at various 3~ 
orderings. In terms of the group velocity ug,  the transverse components ugl become 
explicitly dependent on the longitudinal momenta q (3, 14). Interpreting these results 
one may think of some (but not complete) analogy to the optical diffraction from a 
finite-width slit or double slit (more strictly, one needs smooth slits with continuously 
decreasing transparencies [20]). For an infinitely narrow slit we would have the constant 
intensity diffraction picture (an analogue of small polaron tunnelling with no q depen- 
dence) but in the case of interest we have falling intensities and interference effects. So 
the possible oscillation-like dependence of ugl on q is caused by the interference of 
different tunnelling path sfor polarons/bipolarons. For long bipolarons, such oscillations 
would occur in both AA and AB phases. For polarons in AA they would be absent 
(compare the corresponding double and single peaked amplitude structures in figures 1 
and 2). The period of oscillations may be close to the characteristic fall momentum 
(polarons in AB) or smaller than it (long bipolarons). It should be noted that the 
approach used of a ‘rigid polaron’ remains valid at the values of q - p,: the dependence 
of 1, and MP on q becomes essential at larger q a( E , / W ) ~ ~  (in symbols). 

It is reasonable to define the interchain bandwidth wl for q such that ug is directed 
across the chains. For AA and A% orders with even zq (10,12) it is the region of q = 0 
and wI. x il. However, for the AB order with odd tq ( l l ) ,  the minima of the spectrum 
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(3) are located at finite q ,  at small i, these are 7 q o  with qo cc Mpi , /p(qO < p is assumed) 
and w, a M , ( ~ , / P ) ~  (that is w, cz t T A o / 0 2  in symbols). In any case the interchain 
polaron mobility in the AB phase is strongly suppressed compared with AA order with 
the same t,. As for the transverse bipolaron bandwidth in equation (15), w, t’, for 
both AA and AB at q = 0 but with different signs and values of Y (the ‘shorter’ bipolaron 
the smaller w, in the AB phase). 

It is difficult at the present stage to make definite predictions for experiments. 
Tentatively, it seems that the described features could reveal themselves at low tem- 
peratures in high-quality samples of conducting polymers with large polarons/bipolarons 
through (non-trivial) dependences of the transverse conductivity on a longitudinally 
applied eledtric field, ‘I, = o,(Ell), or as an unusual temperature behaviour of ‘I,. Let 
us refer e.g. to the photoconductivity experiments in oriented trans-(CH), [21-231 and 
poly( phenylene-vinylene) [24] performed at different light polarisations and different 
directions of applied electric field E .  We propose to perform similar experiments but 
with cross-imposed electric fields in order to measure the transverse current as a function 
of Ell at fixed E,. Using the data of [25] for the intrachain mobility of polarons in trans- 
(CH),, the fields E,, - 104-105 V cm-’ correspond to 011 - lo6 cm s-l or, setting MP - me 
[3,25], to a length -100 A. A large quantitative uncertainty being accounted for, such 
a value is comparable with the ‘averaged’ (7) size of polaron so that the supposed 
dependence of o, on Ell could be observedt. However, to substantiate such an assump- 
tion, the present qualitative model has to be extended in many respects including the 
effects of scattering by phonons and defects. 

In this connection let us list some problems (partly known in the theory of small 
polarons [ 131) for future discussion. At increasing temperatures thermally activated 
interchain hops of large polarons would dominate over band-type transport. Besides 
non-adiabatic t ,  transfer considered in this paper, the adiabatic t ,  regime is possible. In 
this case large enough t ,  could even prevent the formation of continual polarons/ 
bipolarons in crystals 19,261 but we emphasise here that there may be a natural origin of 
one-chain polaron/bipolaron stabilisation leading also to hopping interchain transport. 
This is the disorder in the one-chain polaron energies (caused e.g. by the different chain 
lengths) that may strengthen the self-trapping effect more than additively [27]. It would 
also be interesting to clarify the relevance of the questions considered here for bipo- 
laronic superconductivity [28]. 
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